

Biomass Densification, Logistics and Use to Produce Heat and Electricity

Douglas G. Tiffany Assistant Extension Professor University of Minnesota

Southwest Minnesota Energy Board, Slayton, MN March 22, 2010

UNIVERSITY OF MINNESOTA

www.biomassCHPethanol.umn.edu

My Work at the U of M----Economic Analysis of:

- Production of ethanol and biodiesel
- Biomass to produce electricity
- Pyrolysis of grasses to produce bio-oils and chemicals
- Use of biomass to provide process heat and power at fuel ethanol plants
- Biomass densification
- Production, use of Korean High Oil Corn
- Wind production
- Wind-biodiesel hybrids
- Comparison of conventional, cellulosic ethanol production

Time of Dramatic Changes 2005-2009

- High Ag Prices, High Energy Prices, Weak \$US
- Rapid Growth in Liquid Fuels, Biofuels, esp. ethanol
 - Accompanying Changes in Crop Mix in U.S.
- Policy Changes Promoting Ethanol Production -2005 Energy Policy Act
 -2007 Energy Independence and Security Act
 -2008 Farm Bill
- Stock Market Sell-off and Plummeting Crude Oil and Farm Commodity Prices
- Approximately 20% of ethanol capacity was in bankruptcy in 2009--- with recovery and new owners
- Expect substantial opportunities to the electric power markets – some may be local with wind and biomass power

Topics for Today's Discussion

- Follow Eric Woodford's material on the harvest of corn stover, corncobs
- Discuss Corn Stover Logistic system using various densification methods
- Discuss Use of Corn Stover at Ethanol Plants as way to produce process heat and electricity for the plants and for sale to the grid
- Mention related research at the U of M

Biomass Densification

Ethanol coproducts

 DDGS – distillers dried grain with solubles

"syrup" – solubles

- Corn stover
- Corn cobs

Biomass Densities

- Round bales 4 to 6 lb/ft³ (package density)
- Large rectangular bales 8 to 12 lb/ft³ (package density)
- Chopped or ground, non compacted corn stover – 3 to 6 lb/ft³ (bulk density)

Densification – Options?

- Higher density bales (packages) re-baling
- Bale to bulk chopping or coarse grinding

 non compacted 3 to 6 lb/ft³
 roll compacted 12 to 15 lb/ft³
- Further (fine) grinding
 - briquetted 28 to 33 lb/ft³
 - pelleted 32 to 38 lb/ft³

Biomass Bulk Densities

Material	Bulk Density, lb/ft ³		
Compacted biomass	12 to 15		
Briquettes	28 to 33		
Pellets	32 to 38		
Corncobs	10 to 12		
Shelled corn	45		

www.biomassCHPethanol.umn.edu

Desirable Characteristics of Densified Biomass

- Increased bulk density
- High durability of individual products (pellets of briquettes)
- Consistent and relatively small product (pellet or briquette) size – easier to handle, feed into a burner, and automate

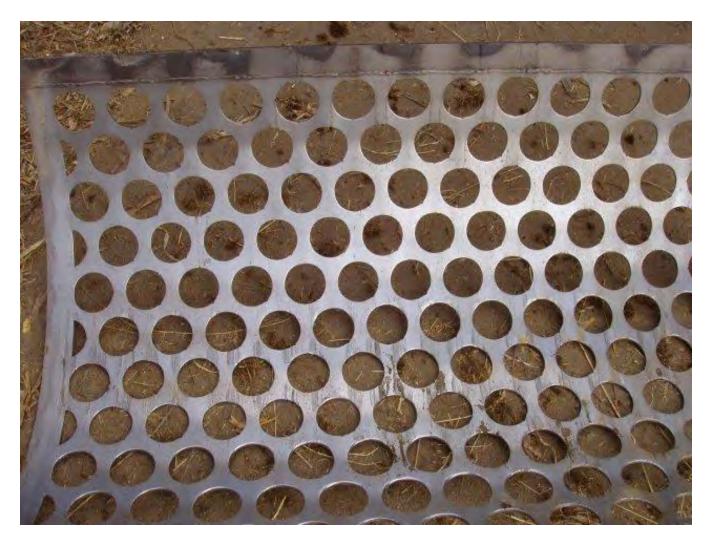
Size Reduction – Tub Grinding

University of Minnesota

www.biomassCHPethanol.umn.edu

RotoChopper

www.biomassCHPethanol.umn.edu


Tub Grinder

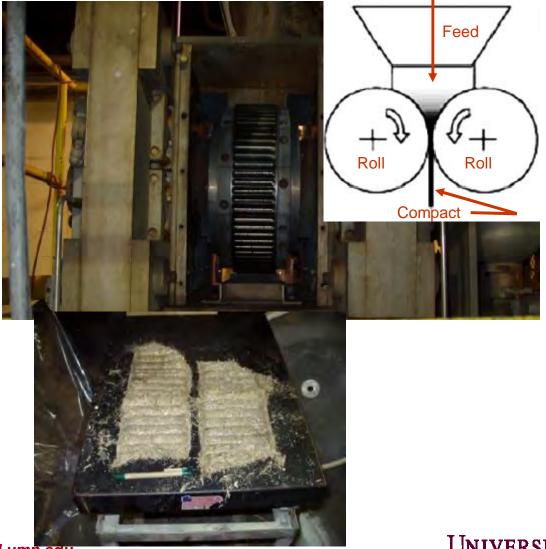
www.biomassCHPethanol.umn.edu

Tub Grinder Screen

www.biomassCHPethanol.umn.edu

Corn stover from 8 inch screen at 19% MC Bulk density of 3 lb/ft³

er

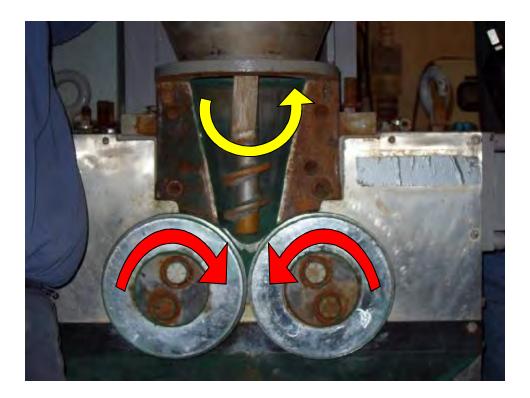

Corn stover from ¾ inch screen at 11% MC Bulk density of 6 lb/ft³

Grasses from 8 inch screen at 12% MC Bulk density of 5 lb/ft³

Roll-Press Compaction

www.biomassCHPethanol.umn.edu

Roll Compacted Corn Stover



www.biomassCHPethanol.umn.edu

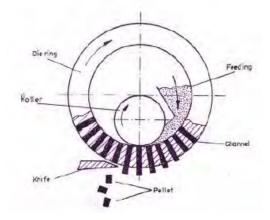


Roll Press Briquetting

Screw feeder and rolls Bepex International LLC, Minneapolis, MN

Briquetting Process

Almond shaped pockets UNIVERSITY OF MINNESOTA


Pelleting Mill

40 HP pelleting mill at AURI, Waseca, MN

Die and Rolls

Pelleting - extrusion

Pellets/Briquettes

UNIVERSITY OF MINNESOTA

www.biomassCHPethanol.umn.edu

Characteristics

	Bulk Density, Ib/ft ³	Durability	Consistency	Size
Compacted	12-15	Low	Large range of shapes/sizes	Large
Briquettes (good)	25-30	Good	Medium	Medium
Briquettes (better)	30-35	Better	High	Medium
Pellets	35-40	Best	High	Small

www.biomassCHPethanol.umn.edu

	Screen (particle) size, inch	Re	Relative Energy,%		
		Chopping/ Grinding	Densify	Total	Relative Capacity, %
Compacted	3	30	5	35	
Briquettes (good)	1	40	5	45	
Briquettes (better)	0.5	55	10	65	
Pellets	0.25	65	35	100	

www.biomassCHPethanol.umn.edu

	Screen	Re	Relative Energy,%		
	(particle) size, inch	Chopping/ Grinding	Densify	Total	Relative Capacity, %
Compacted	3	30	5	35	
Briquettes (good)	1	40	5	45	
Briquettes (better)	0.5	55	10	65	
Pellets	0.25	65	35	100	

www.biomassCHPethanol.umn.edu

	Screen	Relative Energy,%			Relative
	(particle) size, inch	Chopping/ Grinding	Densify	Total	Capacity, %
Compacted	3	30	5	35	
Briquettes (good)	1	40	5	45	
Briquettes (better)	0.5	55	10	65	
Pellets	0.25	65	35	100	

www.biomassCHPethanol.umn.edu

	Screen	Relative Energy,%			Relative
	(particle) size, inch	Chopping/ Grinding	Densify	Total	Capacity, %
Compacted	3	30	5	35	100
Briquettes (good)	1	40	5	45	80
Briquettes (better)	0.5	55	10	65	40
Pellets	0.25	65	35	100	15

www.biomassCHPethanol.umn.edu

Densification Summary

- Reducing particle size (grinding) is important and has by far the largest energy requirement in the overall densification process
- Higher quality (durability and bulk density), smaller size products (briquettes or pellets) are more costly to produce

Corn Stover Logisics

Agricultural – One harvest per year

Industrial – Requires supply throughout the year

www.biomassCHPethanol.umn.edu

Agricultural vs Industrial

Agricultural Scale System – Biomass Source

(Harvest 4-6 weeks in fall)

Collection / Transport to Local Storage

- § Shredding and raking
- § Baling (round bales)
- § Bale storage near field
- § Nutrient replacement

Industrial Scale System – Biomass User

(Supply throughout the year)

Processing (Bale to Bulk)/Truck Transport from Local Storage

§ Tub (coarse) grinding (portable unit)
§ Roll-press compaction (portable unit)
§ Truck transport in 25-ton loads to

users (15 lb/ft³ bulk density)

Heat and Power using Stover at a Corn Ethanol Plant

- 50 million gallons ethanol per year
- 400 to 600 tons per day of stover
 - 16 to 24 truckloads (25 tons each) of compacted bulk biomass per day or
 - 640 to 960 bales (1250 lbs each) per day
- 60 truckloads of corn per day
- 20 truckloads of DDGS per day

Logistics Pattern \bigcap ()

One Way Hauling Distance (black line) with 1.3 Winding Factor (green line)

30 Mile Radius – 52 Mile Average Round Trip Hauling Distance

UNIVERSITY OF MINNESOTA

www.biomassCHPethanol.umn.edu

Harvesting/Transport to Local Storage

www.biomassCHPethanol.umn.edu

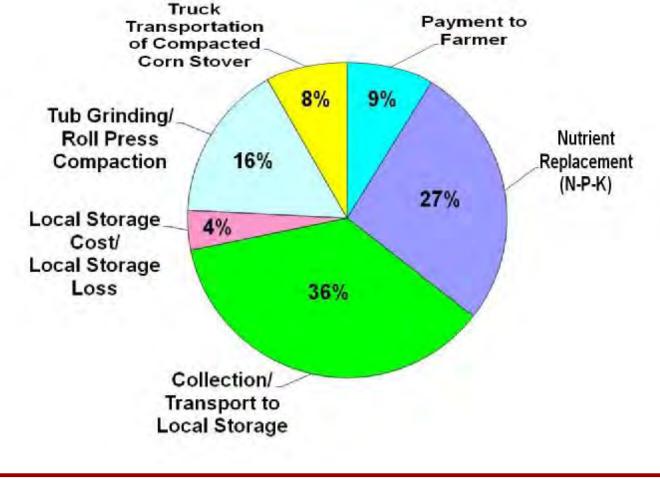
Local Storage Cost and Storage Loss Assumptions

- Bales stored in rows end to end in a north-south orientation, 3 ft between rows of bales
- Storage cost 33¢/ton based on \$200/acre land rent
- Storage loss 5% average assumed for all storage (1 to 11 months). Equivalent to assuming 5% more stover delivered to storage than is removed.

Tub-Grinding/Roll-Press Compaction

www.biomassCHPethanol.umn.edu

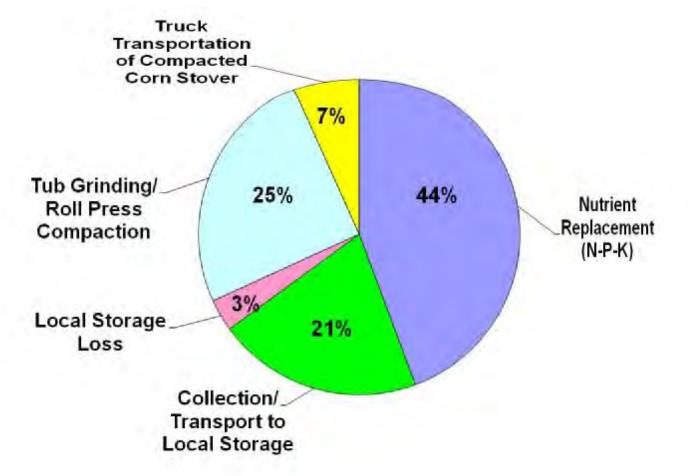
Transport from Local Storage to End User


- Bulk transport in 25-ton truck loads (15 lb/ft³)
- Average round trip distance equals 52 miles

 average distance for a maximum radius of 30
 miles with 1.3 winding factor
- \$6.40/ton average transport cost UNIVERSITY OF MINNESOTA

www.biomassCHPethanol.umn.edu

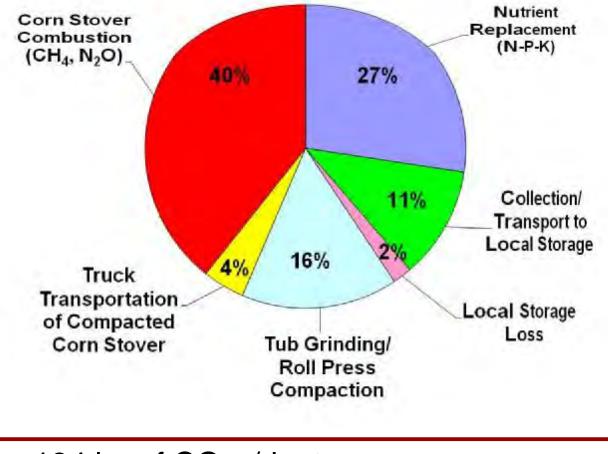
Total Cost



\$77/ton of corn stover delivered (MC = 15% w.b.)

www.biomassCHPethanol.umn.edu

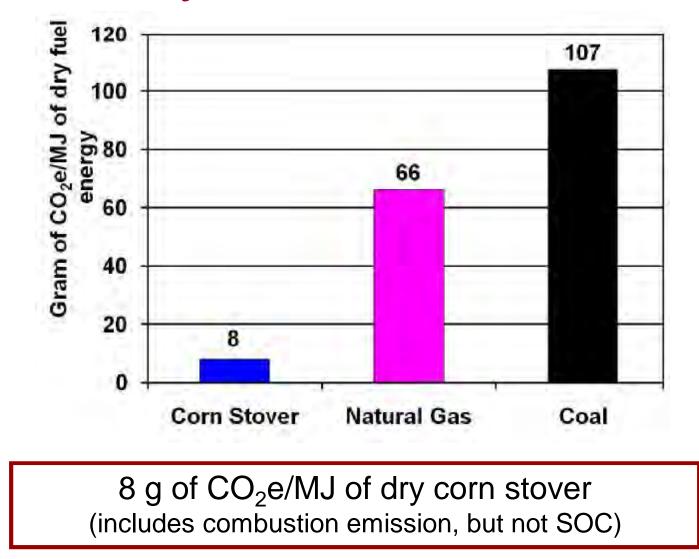
Life-Cycle Fossil Energy Consumption



1101 MJ/dry tonne (i.e., 7% of dry corn stover energy)

www.biomassCHPethanol.umn.edu

Life-Cycle GHG Emission



134 kg of CO_2e/dry tonne of corn stover (includes combustion emission, but not SOC)

www.biomassCHPethanol.umn.edu

Life-Cycle GHG Emission

www.biomassCHPethanol.umn.edu

Biomass for Combined Heat and Power at Ethanol Plants

- Past research done at U of M that models use of biomass for process heat, CHP, and CHP + sales of power to grid
- <u>On-going</u> research using IGCC to produce even more electricity for sale to grid
- Discuss economic, energetic and environmental performance of CHP at ethanol plants

Project Objectives

Determine Technical Feasibility of Using Biomass to Provide Process Heat and Electricity at Ethanol Plants

Determine Economic Sensitivity of Using Biomass with Appropriate Technologies under Various Economic Conditions

www.biomassCHPethanol.umn.edu

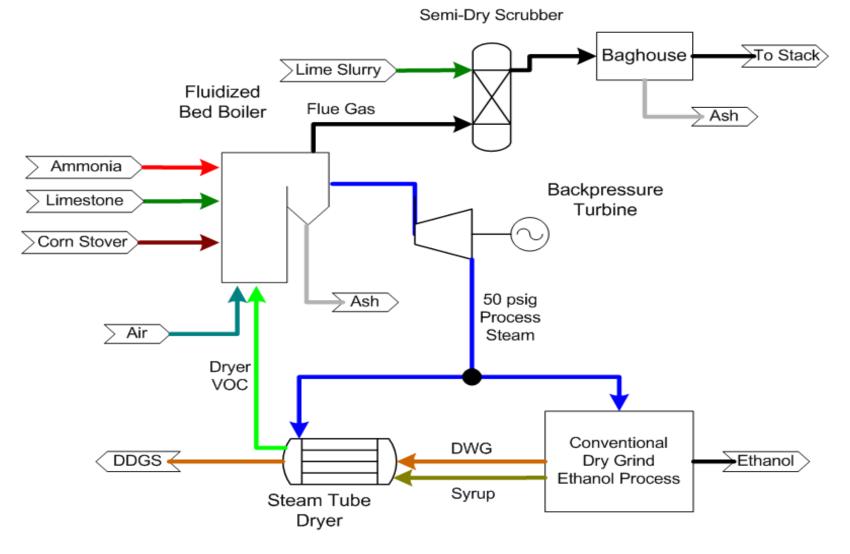
Biomass Fuel for Dry-Grind Plants

- Reduce energy costs, Improve ROI--\$\$\$
- Generate reliable power for the grid
- Improve Renewable Energy Ratio

 Defined as: Energy Out / Fossil Energy In
- Lower the overall greenhouse gas emissions from ethanol production

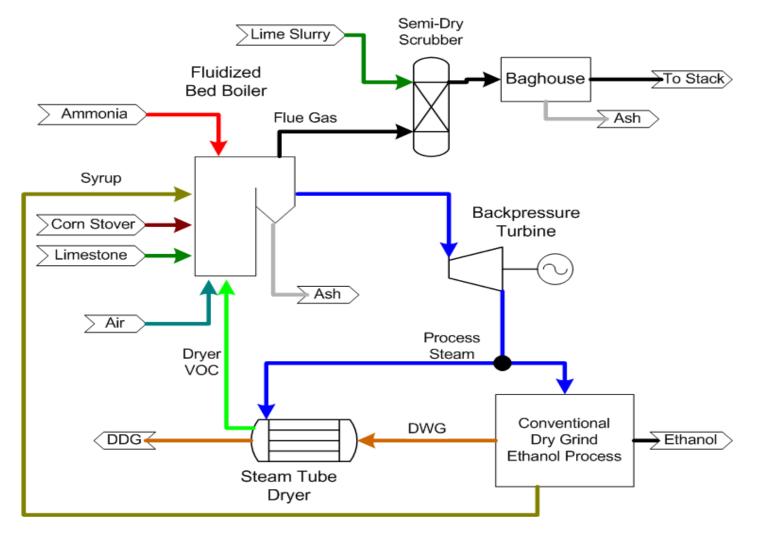
3 Biomass Fuels and 3 Levels of Intensity of Use

- Corn Stover Combusted in Fluidized Bed
- DDGS Gasified in Fluidized Bed
- Syrup + Stover Combusted in Fluidized Bed

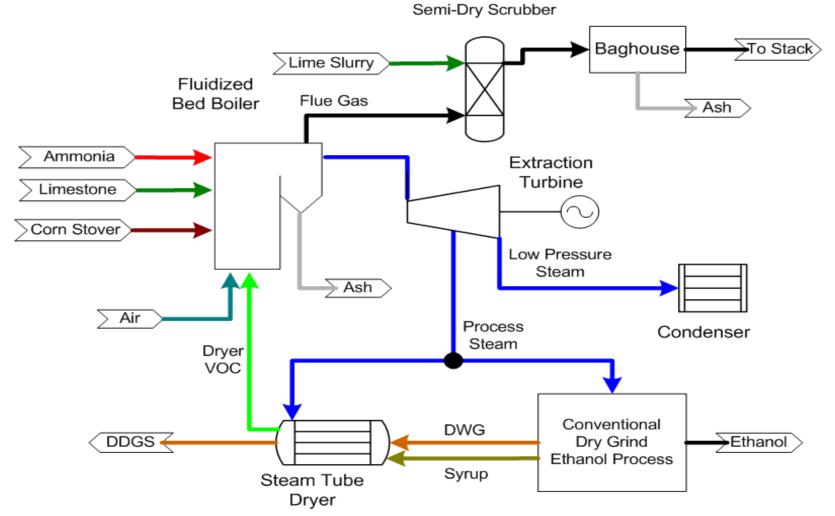

- Process Heat
- Combined Heat and Power (CHP)
- CHP + Sales of Power to the Grid

D.G. Tiffany August 26, 2009

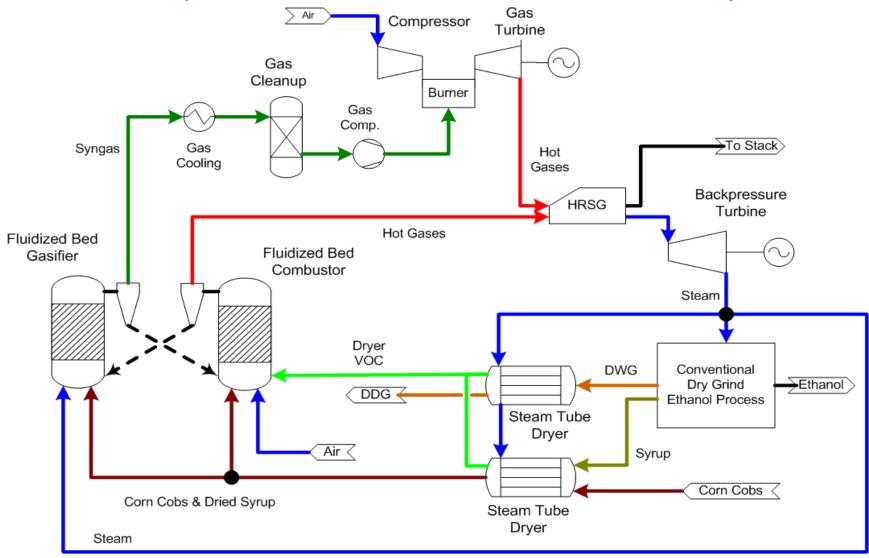
45 UNIVERSITY OF MINNESOTA


<u>10l.umn.edu</u>

Corn Stover Combustion, Level 2: CHP


D.G. Tiffany August 26, 2009

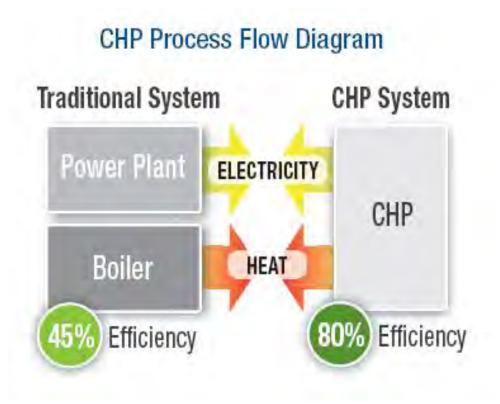
Syrup and Corn Stover Combustion, Level 2: CHP



D.G. Tiffany August 26, 2009

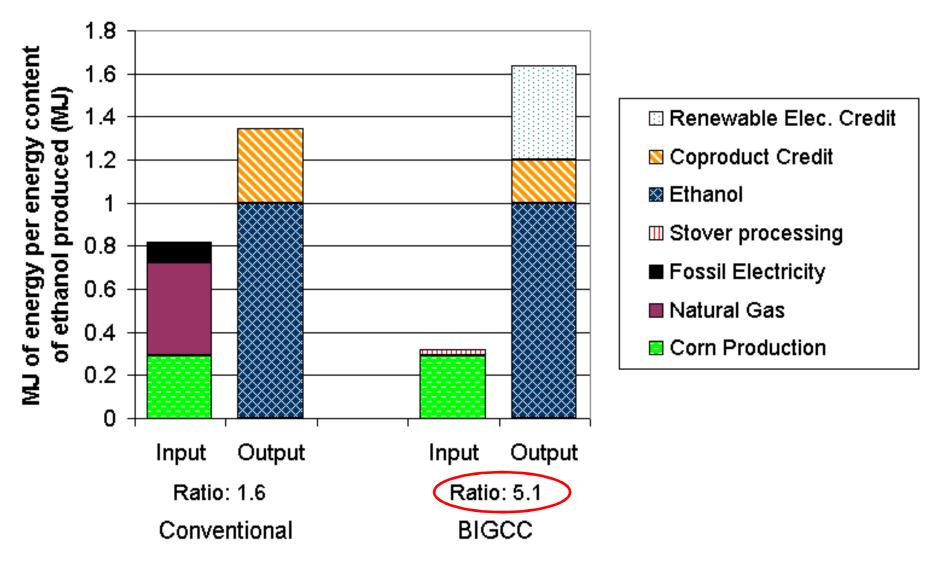
Corn Stover Combustion, Level 3: CHP + Grid

Integrated Gasification Combined Cycle (FERCO SilvaGas[™] Process)



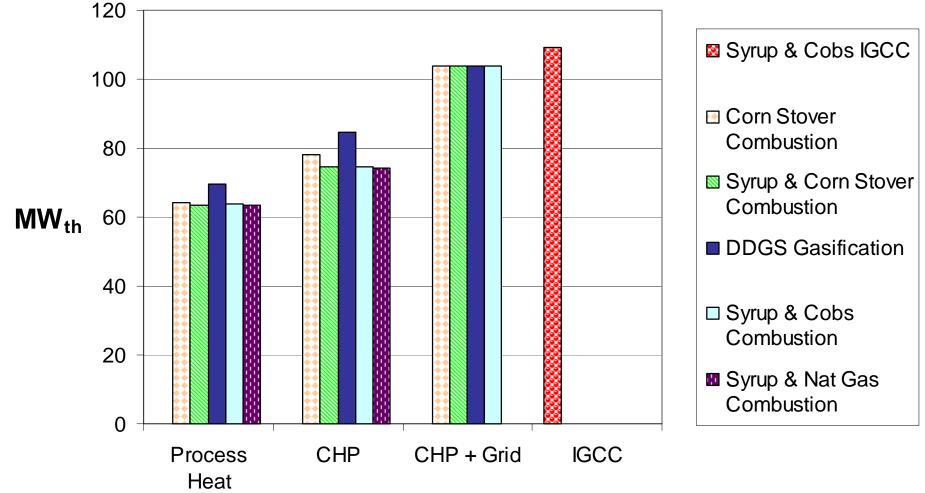
D.G. Tiffany August 2489 2009


U.S. Dept. of Energy Encourages CHP


- Utilize Process Heat before or after using to generate electricitycuts GHG by 53%.
- Requires greater investment, coordination with power utilities.
- Source: Combine Heat and Power: Effective Energy Solutions for a Sustainable Future, ORNL. <u>http://www.osti.gov/bridge</u>

D.G. TTiffaanyy, Augurse 26, 2009

Electricity Production and Use

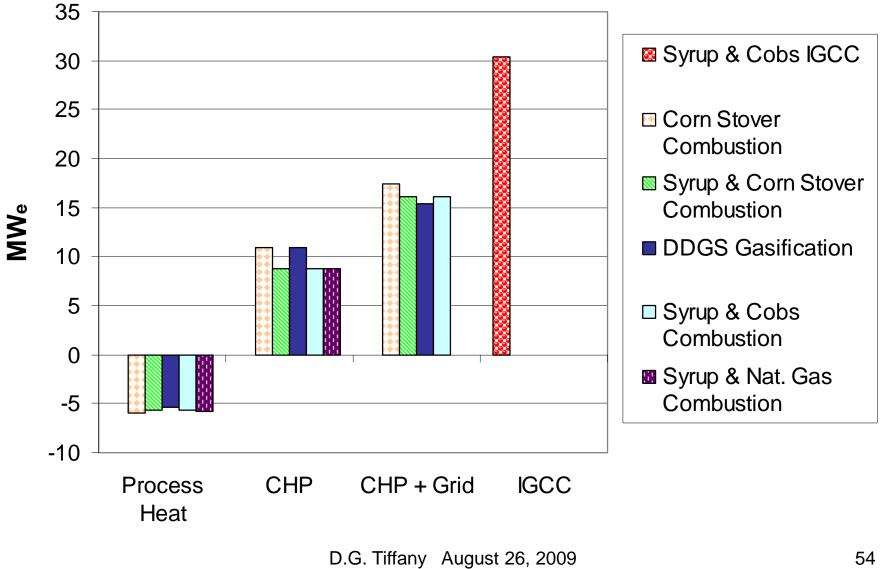


Energy Balance

D.G. Tiffany August 252, 2009

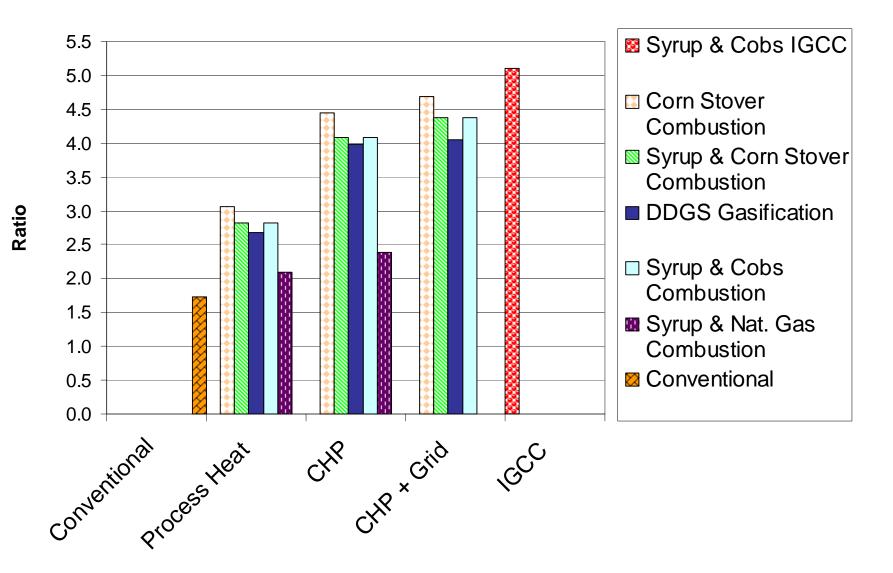
Fuel Energy Input Rate

190 ML/yr ethanol facility



D.G. Tiffany August 26, 2009

UNIVERSITY OF MINNESOTA


53

Gross Electricity Generation (and Use)

www.biomassCHPethanol.umn.edu


Renewable Energy Ratio (LHV)

D.G. Tiffany August 2355, 2009

Baseline ROR's for 50 MM Gallon Plant

www.biomassCHPethanol.umn.edu

GHG Emissions of Ethanol using Corn Stover as a Fue

	Convent . Corn Ethanol	CHP	CHP + Grid	BIGCC
GHG Reduction	52%	82%	92%	115%
GHG Reduction with CO ₂ Sequst.	85%	116%	126%	149%
	D.G. Tiffa	ny August 26, 20)09	57

GHG Emissions of Ethanol using Syrup and Corn Stover as a Fuel

	Convent . Corn Ethanol	CHP	CHP + Grid	BIGCC
GHG Reduction	52%	75%	86%	111%
GHG Reduction with CO ₂ Sequst.	85%	108%	120%	145%

D.G. Tiffany August 26, 2009

UNIVERSITY OF MINNESOTA

58

Amount of Biomass Required, %

		Corn stover		Syrup + stover	
	DDGS	Ethanol corn acres	All corn acres*	Ethanol corn acres	All corn acres*
Process heat	70%	27%	9%	9%	3%
СНР	80%	30%	10%	12%	4%
CHP + grid	100%	40%	13%	27%	9%

*Assumes 1/3 of corn acres go for ethanol, 2009

59 University of Minnesota

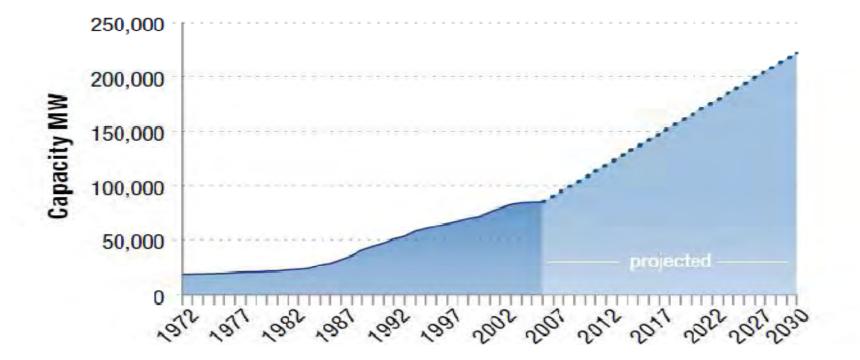
Changes on the Land and in the Soil

D.G. Tiffany Ut Minnesota 6/01/2009

Biomass Harvest Rates Must Consider Maintenance of Relic Soil Organic Carbon

- Preservation of relic soil organic carbon is key issue associated with biomass harvest
- Removal of 70% of corn stover in half the years growing corn should maintain SOC

Doug Tiffany April 24, 2009

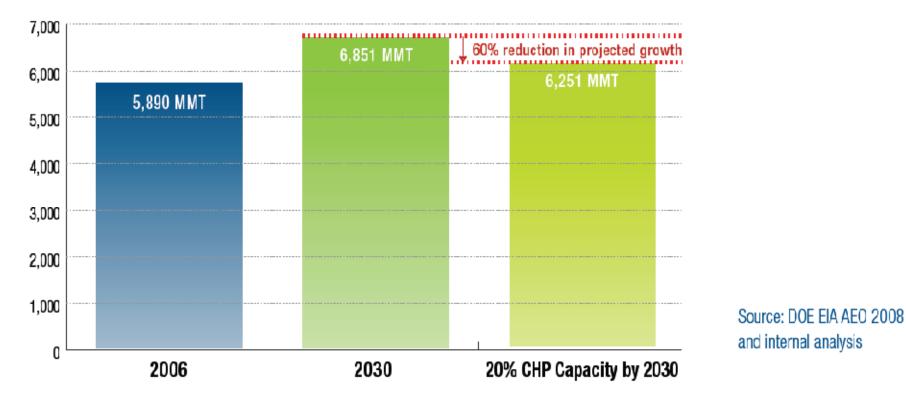

Will Logistical Requirements be too difficult? No!!!

- Heat and Power using Stover for 50 million gallons ethanol per year
- 400 to 500 tons per day of stover
 - 16 to 20 truckloads (25 tons each) of briquettes or pellets per day or
 - 640 to 800 bales (1250 lbs each) per day
- 60 truckloads of corn per day
- 20 truckloads of DDGS per day

DOE Goal: CHP Expansion from 9% to 20% of U.S. Capacity by 2030

Source: Combine Heat and Power: Effective Energy Solutions for a Sustainable Future, ORNL. http://www.osti.gov/bridge

Historical CHP Capacity and Growth Needed to Achieve 20% of Generation



D.G. Tiffany August 263, 2009

U.S. CO2 Emissions 2006-2030 and Effect of 20% CHP

Source: Combine Heat and Power: Effective Energy Solutions for a Sustainable Future, ORNL. http://www.osti.gov/bridge

US Carbon Dioxide Emissions 2006 and 2030 (MMT)

D.G. Tiffany August 26, 2009

Summary

- Using biomass as a fuel producing CHP requires implementation of known technologies.
- Plentiful biomass supplies are at or near plants.
- Logistics are not a deal-breaker, but expect stover to cost about \$80 per ton as a densified product at the plant.
- GHG emissions of the ethanol can be vastly improved when CHP is implemented at dry-grind plants. Corn ethanol can equal Brazilian sugar cane-based ethanol in GHG reductions.
- CHP Implementation is expected to become more common in the U.S. as GHG reduction targets become formalized.

Use of Biomass at Ethanol Plants

- <u>Technically feasible and fiscally prudent</u>, especially when policies favoring low carbon fuel standards are adopted.
- Improves energy balance and drastically reduces the carbon footprint of ethanol produced from corn.
- Each 1 Billion gallons of ethanol capacity can produce 300 MWe for the grid, probably 600 MWe for IGCC.
- Use of biomass as a fuel at ethanol plants can be a bridge technology to other technologies for biofuels production.

Thanks!

<u>tiffa002@umn.edu</u>
 (612) 625-6715

http://www.apec.umn.edu/staff/d tiffany/

